Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
self-instructive depressing
Περιβόητο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Αν δεν πάρω αθέτηση σήμερα.
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
self-instructive depressing
Περιβόητο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
self-instructive depressing
Περιβόητο μέλος
Τις προάλλες πάω να πάρω εισιτήριο για το λεωφορείο.
Ο υπάλληλος στο θάλαμο του ΟΑΣΑ είχε πιάσει ψιλή κουβεντούλα με έναν για άσχετα θέματα.
Εγώ: Εχμ...Συγγνώμη;
Με κλ@νει και συνεχίζει να μιλάει.
Ξανά: Εεεε...συγγνώμη;
Αυτός: Αμαν πια, συγγνώμη και συγγνώμη! Αμα κλείσω το θάλαμο και κάνεις να βρεις εισήτήριο μια ώρα θα σου πω εγώ!
(λέω απο μέσα μου, ηρέμησε Λία)
Εγώ: Ένα μειωμένο ενιαίο παρακαλώ
Πληρώνω, μου δίνει ένα εισητήριο, φεύγω.
Μετά απο λίγο που περίμενα το λεωφορείο, διαπιστώνω οτι αντί για μειωμένο ενιαίο μου έδωσε κανονικό για λεωφορείο μόνο (έχουν την ίδια τιμή οπότε δεν το κατάλαβα όταν πλήρωνα)
Πάω πίσω. Αυτός συνέχιζε την κουβεντούλα.
Εγώ: Συγγνώμη το ει΄σιτήριο που μου δώσατε, αντί για μειωμένο ενιαίο ήταν κανονικό λεωφορείου. Μπορείτε να μου το αλλάξετε;
Μου αλλάζει το εισητήριο μουρμουρώντας σε αυτόν που μίλαγε πριν για το ...θράσος μου.
Ε εκεί τα πήρα και του λέω "Μα τι πρόβλημα έχετε; Τι έκανα τώρα; Η δουλειά σας δεν είναι; Αν δεν μπορείτε να την κάνετε καλά είναι δικό σας πρόβλημα!"
Χαχααχ, "μα τι εκανα τωρα" !! Michelle καλα το πας, αλλα θελει λιγο πιο βαρυ υφος :p Εισαι σε καλο δρομο παντως
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
borat
Επιφανές μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
self-instructive depressing
Περιβόητο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
borat
Επιφανές μέλος
Ο Γκεόργκ Φρίντριχ Μπέρναρντ Ρίμαν ή Ρήμαν (Georg Friedrich Bernhard Riemann, 17 Σεπτεμβρίου 1826 – 20 Ιουλίου 1866) ήταν Γερμανός μαθηματικός που συνεισέφερε σημαντικά στη Μαθηματική Ανάλυση, την Τοπολογία, την Αναλυτική Θεωρία των αριθμών και τη Διαφορική Γεωμετρία, προωθώντας τη μη ευκλείδεια Γεωμετρία και ανοίγοντας έτσι τον δρόμο μεταξύ άλλων και για τη θεμελίωση αργότερα της Γενικής Θεωρίας της Σχετικότητας. Κατά τον D. Struik «με τον Ρίμαν φτάνουμε στον άνθρωπο που επηρέασε περισσότερο από κάθε άλλον την πορεία των σύγχρονων Μαθηματικών».
Τα πρώτα χρόνια
Ο Ρίμαν γεννήθηκε στο Μπρέζελεντς (Breselenz), ένα χωριό κοντά στο Ντάνενμπεργκ, στο κρατίδιο Ανόβερο της Γερμανίας. Ο πατέρας του, ο Friedrich Bernhard Riemann, ήταν ένας φτωχός Λουθηρανός πάστορας στο χωριό και είχε πολεμήσει στους Ναπολεόντειους Πολέμους. Η μητέρα του πέθανε πριν μεγαλώσουν τα παιδιά της. Ο Ρίμαν ήταν το δεύτερο από 6 παιδιά, ντροπαλός και με νευρικές καταρρεύσεις. Ωστόσο, έδειξε ασυνήθιστες μαθηματικές ικανότητες, όπως αφάνταστη ταχύτητα στους υπολογισμούς, από μικρή ηλικία, αλλά υπέφερε από δειλία και φόβο να μιλά δημόσια.
Στο σχολείο ο Ρίμαν μελέτησε πολύ τη Βίβλο αλλά το μυαλό του συχνά γυρνούσε στα Μαθηματικά. Προσπάθησε ακόμα και να αποδείξει μαθηματικά την ορθότητα της Γενέσεως. Οι δάσκαλοί του έμεναν κατάπληκτοι από την ευφυΐα του και την ικανότητά του να εκτελεί εξαιρετικά πολύπλοκες μαθηματικές πράξεις. Συχνά ξεπερνούσε τις γνώσεις του δασκάλου του. Το 1840 ο Ρίμαν πήγε στο Ανόβερο να ζήσει με τη γιαγιά του, ώστε να σπουδάσει παραπέρα. Μετά τον θάνατό της το 1842, γράφτηκε στο Johanneum («Ιωάννειο Λύκειο») στο Λύνεμπουργκ. Το 1846, σε ηλικία 19 ετών, άρχισε να μελετά Φιλολογία και Θεολογία ώστε να γίνει ιερέας και να βοηθήσει έτσι οικονομικά την οικογένειά του. Αλλά τον επόμενο χρόνο, ο πατέρας του, αφού κατόρθωσε να συγκεντρώσει με μεγάλες δυσκολίες αρκετά χρήματα για να τον στείλει στο πανεπιστήμιο, του επέτρεψε να αφήσει τη Θεολογία και να αρχίσει σπουδές στα Μαθηματικά. Τον έστειλε στο ονομαστό Πανεπιστήμιο του Γκέτινγκεν, όπου συνάντησε τον μεγάλο μαθηματικό Καρλ Φρίντριχ Γκάους και παρακολούθησε διαλέξεις του πάνω στη μέθοδο των ελάχιστων τετραγώνων.
Τα ώριμα χρόνια
Σύντομα ωστόσο ο Ρίμαν μετακόμισε στο Βερολίνο, όπου δίδασκαν οι Γιακόμπι, Ντίριχλετ και Στάινερ. Παρέμεινε στο Βερολίνο επί διετία και επέστρεψε στο Γκέτινγκεν το 1849.
Ο Ρίμαν άρχισε να δίνει διαλέξεις το 1854, διαλέξεις που θεμελίωσαν τη Γεωμετρία που σήμερα αποκαλείται «Ριμάνεια». Μετά από μια αποτυχημένη προσπάθεια να γίνει καθηγητής κατ' εξαίρεση στο Πανεπιστήμιο του Γκέτινγκεν σε ηλικία μόλις 31 ετών (το 1857), ο Ρίμαν απέκτησε ένα κανονικό μισθό. Το 1859 τελικά, μετά τον θάνατο των Γκάους και Ντίριχλετ, εκλέχθηκε καθηγητής και επικεφαλής του Τμήματος Μαθηματικών εκεί. Υπήρξε ο πρώτος που εισηγήθηκε τη θεωρία των ανώτερων διαστάσεων, που απλοποίησε πολύ προβλήματα της Φυσικής, μέχρι σήμερα.
Το 1862 ο Ρίμαν νυμφεύθηκε την Elise Koch, με την οποία απέκτησαν μία κόρη. Τέσσερα χρόνια αργότερα, ο Μπέρναρντ Ρίμαν πέθανε από φυματίωση στο τρίτο του ταξίδι στην Ιταλία, στη Σελάσκα της Γκίφα, στις ακτές της Λίμνης Ματζόρε, όπου παραθέριζε εξαιτίας του καλού κλίματος για την πάθησή του.
Το έργο του Ρίμαν άνοιξε νέες ερευνητικές περιοχές συνδυάζοντας την Ανάλυση με τη Γεωμετρία. Εκτός από τη Ριμάνεια Γεωμετρία, η θεωρία των επιφανειών Ρίμαν αναπτύχθηκε παραπέρα από τους Φέλιξ Κλάιν και Άντολφ Χούρεβιτς και σήμερα συνιστά ένα από τα θεμέλια της Τοπολογίας, ενώ εφαρμόζεται ακόμα με νέους τρόπους στη Μαθηματική Φυσική.
Ο Ρίμαν προσέφερε πολλά στην Πραγματική Ανάλυση: όρισε το ολοκλήρωμα Ρίμαν με τη βοήθεια των αθροισμάτων Ρίμαν, ανέπτυξε μια θεωρία για τις τριγωνομετρικές σειρές που δεν είναι σειρές Φουριέ — ένα πρώτο βήμα για μια θεωρία των γενικευμένων συναρτήσεων — και μελέτησε το διαφορικό ολοκλήρωμα Ρίμαν-Λιουβίλ.
Πολύ γνωστές είναι και κάποιες συνεισφορές του Ρίμαν στη σύγχρονη Αναλυτική Θεωρία των αριθμών. Σε μία και μόνη σύντομη δημοσίευση (τη μοναδική του επί της Αριθμοθεωρίας), εισήγαγε τη Συνάρτηση ζ του Ρίμαν και έδειξε τη σημασία της για την κατανόηση της κατανομής των πρώτων αριθμών. Διετύπωσε μια σειρά από εικασίες σχετικές με ιδιότητες της συναρτήσεως ζ, μία από τις οποίες είναι η περιβοήτη Υπόθεση του Ρίμαν.
Ο Ρίμαν εφάρμοσε την Αρχή του Dirichlet από τον Λογισμό των μεταβολών με σπουδαία αποτελέσματα. Η εργασία του στη μονοδρομία και στην υπεργεωμετρική συνάρτηση στους μιγαδικούς έκανε μεγάλη εντύπωση και καθιέρωσε μια βασική μέθοδο εργασίας με συναρτήσεις «λαβαίνοντας υπόψη μόνο τις ανωμαλίες τους».
Το 1853, ο Γκάους ζήτησε από τον φοιτητή του Ρίμαν να ετοιμάσει και να παρουσιάσει μια διατριβή επί υφηγεσία πάνω στα θεμέλια της Γεωμετρίας. Μετά από πολλούς μήνες ο Ρίμαν ανέπτυξε τη θεωρία του για τις ανώτερες διαστάσεις. Όταν τελικά έδωσε τη διάλεξή του στο Γκέτινγκεν το 1854, το μαθηματικό κοινό την υποδέχθηκε με ενθουσιασμό. Θεωρείται ακόμα μία από τις σημαντικότερες εργασίες για τη Γεωμετρία. Ο τίτλος της ήταν Über die Hypothesen welche der Geometrie zu Grunde liegen («Επί των υποθέσεων που βρίσκονται στα θεμέλια της Γεωμετρίας»).
Αυτό που θεμελίωσε η παραπάνω εργασία ήταν η Ριμάνεια Γεωμετρία. Ο Ρίμαν βρήκε τον σωστό τρόπο να επεκτείνει σε «ν» διαστάσεις τη Διαφορική Γεωμετρία των επιφανειών, την οποία ο ίδιος ο Γκάους είχε αποδείξει με το theorema egregium. Το θεμελιώδες εδώ είναι ο Τανυστής καμπυλότητας Ρίμαν. Για την περίπτωση μιας επιφάνειας, αυτός μπορεί να αναχθεί σε ένα αριθμό (βαθμωτό), θετικό, αρνητικό ή μηδέν: οι μη μηδενικές και σταθερές περιπτώσεις είναι τα μοντέλα των γνωστών μη ευκλείδειων γεωμετριών.
Ανώτερες διαστάσεις
Η ιδέα του Ρίμαν ήταν να εισαγάγει ένα σύνολο αριθμών για κάθε σημείο του χώρου που θα περιέγραφαν το πόσο καμπυλωμένος ήταν. Βρήκε ότι στις 4 χωρικές διαστάσεις χρειάζονται 10 αριθμοί σε κάθε σημείο για την πλήρη περιγραφή των ιδιοτήτων μιας πολλαπλότητας, όσο και όπως παραμορφωμένη και να είναι αυτή. Αυτός είναι ο περίφημος μετρικός τανυστής.
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
borat
Επιφανές μέλος
είναι ο δικός του τρόπος να πει <<σκατομέρα>>
Γιού σπικ δε τρουθ.
Τι κάνεις μαν; Πως πάει η παλιοζωή;
Υπηρέτησες αφεντάδες σήμερα για πενταροδεκάρες;
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Είσαι πολύ απόλυτος.Κάτσε να σου πω.
Ο Γκεόργκ Φρίντριχ Μπέρναρντ Ρίμαν ή Ρήμαν (Georg Friedrich Bernhard Riemann, 17 Σεπτεμβρίου 1826 – 20 Ιουλίου 1866) ήταν Γερμανός μαθηματικός που συνεισέφερε σημαντικά στη Μαθηματική Ανάλυση, την Τοπολογία, την Αναλυτική Θεωρία των αριθμών και τη Διαφορική Γεωμετρία, προωθώντας τη μη ευκλείδεια Γεωμετρία και ανοίγοντας έτσι τον δρόμο μεταξύ άλλων και για τη θεμελίωση αργότερα της Γενικής Θεωρίας της Σχετικότητας. Κατά τον D. Struik «με τον Ρίμαν φτάνουμε στον άνθρωπο που επηρέασε περισσότερο από κάθε άλλον την πορεία των σύγχρονων Μαθηματικών».
Τα πρώτα χρόνια
Ο Ρίμαν γεννήθηκε στο Μπρέζελεντς (Breselenz), ένα χωριό κοντά στο Ντάνενμπεργκ, στο κρατίδιο Ανόβερο της Γερμανίας. Ο πατέρας του, ο Friedrich Bernhard Riemann, ήταν ένας φτωχός Λουθηρανός πάστορας στο χωριό και είχε πολεμήσει στους Ναπολεόντειους Πολέμους. Η μητέρα του πέθανε πριν μεγαλώσουν τα παιδιά της. Ο Ρίμαν ήταν το δεύτερο από 6 παιδιά, ντροπαλός και με νευρικές καταρρεύσεις. Ωστόσο, έδειξε ασυνήθιστες μαθηματικές ικανότητες, όπως αφάνταστη ταχύτητα στους υπολογισμούς, από μικρή ηλικία, αλλά υπέφερε από δειλία και φόβο να μιλά δημόσια.
Στο σχολείο ο Ρίμαν μελέτησε πολύ τη Βίβλο αλλά το μυαλό του συχνά γυρνούσε στα Μαθηματικά. Προσπάθησε ακόμα και να αποδείξει μαθηματικά την ορθότητα της Γενέσεως. Οι δάσκαλοί του έμεναν κατάπληκτοι από την ευφυΐα του και την ικανότητά του να εκτελεί εξαιρετικά πολύπλοκες μαθηματικές πράξεις. Συχνά ξεπερνούσε τις γνώσεις του δασκάλου του. Το 1840 ο Ρίμαν πήγε στο Ανόβερο να ζήσει με τη γιαγιά του, ώστε να σπουδάσει παραπέρα. Μετά τον θάνατό της το 1842, γράφτηκε στο Johanneum («Ιωάννειο Λύκειο») στο Λύνεμπουργκ. Το 1846, σε ηλικία 19 ετών, άρχισε να μελετά Φιλολογία και Θεολογία ώστε να γίνει ιερέας και να βοηθήσει έτσι οικονομικά την οικογένειά του. Αλλά τον επόμενο χρόνο, ο πατέρας του, αφού κατόρθωσε να συγκεντρώσει με μεγάλες δυσκολίες αρκετά χρήματα για να τον στείλει στο πανεπιστήμιο, του επέτρεψε να αφήσει τη Θεολογία και να αρχίσει σπουδές στα Μαθηματικά. Τον έστειλε στο ονομαστό Πανεπιστήμιο του Γκέτινγκεν, όπου συνάντησε τον μεγάλο μαθηματικό Καρλ Φρίντριχ Γκάους και παρακολούθησε διαλέξεις του πάνω στη μέθοδο των ελάχιστων τετραγώνων.
Τα ώριμα χρόνια
Σύντομα ωστόσο ο Ρίμαν μετακόμισε στο Βερολίνο, όπου δίδασκαν οι Γιακόμπι, Ντίριχλετ και Στάινερ. Παρέμεινε στο Βερολίνο επί διετία και επέστρεψε στο Γκέτινγκεν το 1849.
Ο Ρίμαν άρχισε να δίνει διαλέξεις το 1854, διαλέξεις που θεμελίωσαν τη Γεωμετρία που σήμερα αποκαλείται «Ριμάνεια». Μετά από μια αποτυχημένη προσπάθεια να γίνει καθηγητής κατ' εξαίρεση στο Πανεπιστήμιο του Γκέτινγκεν σε ηλικία μόλις 31 ετών (το 1857), ο Ρίμαν απέκτησε ένα κανονικό μισθό. Το 1859 τελικά, μετά τον θάνατο των Γκάους και Ντίριχλετ, εκλέχθηκε καθηγητής και επικεφαλής του Τμήματος Μαθηματικών εκεί. Υπήρξε ο πρώτος που εισηγήθηκε τη θεωρία των ανώτερων διαστάσεων, που απλοποίησε πολύ προβλήματα της Φυσικής, μέχρι σήμερα.
Το 1862 ο Ρίμαν νυμφεύθηκε την Elise Koch, με την οποία απέκτησαν μία κόρη. Τέσσερα χρόνια αργότερα, ο Μπέρναρντ Ρίμαν πέθανε από φυματίωση στο τρίτο του ταξίδι στην Ιταλία, στη Σελάσκα της Γκίφα, στις ακτές της Λίμνης Ματζόρε, όπου παραθέριζε εξαιτίας του καλού κλίματος για την πάθησή του.
Το έργο του Ρίμαν άνοιξε νέες ερευνητικές περιοχές συνδυάζοντας την Ανάλυση με τη Γεωμετρία. Εκτός από τη Ριμάνεια Γεωμετρία, η θεωρία των επιφανειών Ρίμαν αναπτύχθηκε παραπέρα από τους Φέλιξ Κλάιν και Άντολφ Χούρεβιτς και σήμερα συνιστά ένα από τα θεμέλια της Τοπολογίας, ενώ εφαρμόζεται ακόμα με νέους τρόπους στη Μαθηματική Φυσική.
Ο Ρίμαν προσέφερε πολλά στην Πραγματική Ανάλυση: όρισε το ολοκλήρωμα Ρίμαν με τη βοήθεια των αθροισμάτων Ρίμαν, ανέπτυξε μια θεωρία για τις τριγωνομετρικές σειρές που δεν είναι σειρές Φουριέ — ένα πρώτο βήμα για μια θεωρία των γενικευμένων συναρτήσεων — και μελέτησε το διαφορικό ολοκλήρωμα Ρίμαν-Λιουβίλ.
Πολύ γνωστές είναι και κάποιες συνεισφορές του Ρίμαν στη σύγχρονη Αναλυτική Θεωρία των αριθμών. Σε μία και μόνη σύντομη δημοσίευση (τη μοναδική του επί της Αριθμοθεωρίας), εισήγαγε τη Συνάρτηση ζ του Ρίμαν και έδειξε τη σημασία της για την κατανόηση της κατανομής των πρώτων αριθμών. Διετύπωσε μια σειρά από εικασίες σχετικές με ιδιότητες της συναρτήσεως ζ, μία από τις οποίες είναι η περιβοήτη Υπόθεση του Ρίμαν.
Ο Ρίμαν εφάρμοσε την Αρχή του Dirichlet από τον Λογισμό των μεταβολών με σπουδαία αποτελέσματα. Η εργασία του στη μονοδρομία και στην υπεργεωμετρική συνάρτηση στους μιγαδικούς έκανε μεγάλη εντύπωση και καθιέρωσε μια βασική μέθοδο εργασίας με συναρτήσεις «λαβαίνοντας υπόψη μόνο τις ανωμαλίες τους».
Το 1853, ο Γκάους ζήτησε από τον φοιτητή του Ρίμαν να ετοιμάσει και να παρουσιάσει μια διατριβή επί υφηγεσία πάνω στα θεμέλια της Γεωμετρίας. Μετά από πολλούς μήνες ο Ρίμαν ανέπτυξε τη θεωρία του για τις ανώτερες διαστάσεις. Όταν τελικά έδωσε τη διάλεξή του στο Γκέτινγκεν το 1854, το μαθηματικό κοινό την υποδέχθηκε με ενθουσιασμό. Θεωρείται ακόμα μία από τις σημαντικότερες εργασίες για τη Γεωμετρία. Ο τίτλος της ήταν Über die Hypothesen welche der Geometrie zu Grunde liegen («Επί των υποθέσεων που βρίσκονται στα θεμέλια της Γεωμετρίας»).
Αυτό που θεμελίωσε η παραπάνω εργασία ήταν η Ριμάνεια Γεωμετρία. Ο Ρίμαν βρήκε τον σωστό τρόπο να επεκτείνει σε «ν» διαστάσεις τη Διαφορική Γεωμετρία των επιφανειών, την οποία ο ίδιος ο Γκάους είχε αποδείξει με το theorema egregium. Το θεμελιώδες εδώ είναι ο Τανυστής καμπυλότητας Ρίμαν. Για την περίπτωση μιας επιφάνειας, αυτός μπορεί να αναχθεί σε ένα αριθμό (βαθμωτό), θετικό, αρνητικό ή μηδέν: οι μη μηδενικές και σταθερές περιπτώσεις είναι τα μοντέλα των γνωστών μη ευκλείδειων γεωμετριών.
Ανώτερες διαστάσεις
Η ιδέα του Ρίμαν ήταν να εισαγάγει ένα σύνολο αριθμών για κάθε σημείο του χώρου που θα περιέγραφαν το πόσο καμπυλωμένος ήταν. Βρήκε ότι στις 4 χωρικές διαστάσεις χρειάζονται 10 αριθμοί σε κάθε σημείο για την πλήρη περιγραφή των ιδιοτήτων μιας πολλαπλότητας, όσο και όπως παραμορφωμένη και να είναι αυτή. Αυτός είναι ο περίφημος μετρικός τανυστής.
(τι λες;)
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
borat
Επιφανές μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
borat
Επιφανές μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
borat
Επιφανές μέλος
Βαριέμαι.
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
borat
Επιφανές μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
borat
Επιφανές μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
borat
Επιφανές μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
- Status
- Το θέμα δεν είναι ανοιχτό για νέες απαντήσεις.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 16 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 11 μέλη διάβασαν αυτό το θέμα:
- Reader
- Palermo Player
- American Economist
- Joji
- Palermo Player
- Palermo Player
- charmander
- Xristinaqui
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.